Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Virol Sin ; 38(2): 257-267, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: covidwho-2286110

RESUMEN

Neutralizing monoclonal antibodies (mAb) are a major therapeutic strategy for the treatment of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. The continuous emergence of new SARS-CoV-2 variants worldwide has increased the urgency for the development of new mAbs. In this study, we immunized mice with the receptor-binding domain (RBD) of the SARS-CoV-2 prototypic strain (WIV04) and screened 35 RBD-specific mAbs using hybridoma technology. Results of the plaque reduction neutralization test showed that 25 of the mAbs neutralized authentic WIV04 strain infection. The 25 mAbs were divided into three categories based on the competitive enzyme-linked immunosorbent assay results. A representative mAb was selected from each category (RD4, RD10, and RD14) to determine the binding kinetics and median inhibitory concentration (IC50) of WIV04 and two variants of concern (VOC): B.1.351 (Beta) and B.1.617.2 (Delta). RD4 neutralized the B.1.617.2 variant with an IC50 of 2.67 â€‹ng/mL; however, it completely lost neutralizing activity against the B.1.351 variant. RD10 neutralized both variants with an IC50 exceeding 100 â€‹ng/mL; whereas RD14 neutralized two variants with a higher IC50 (>1 â€‹mg/mL). Animal experiments were performed to evaluate the protective effects of RD4 and RD10 against various VOC infections. RD4 could protect Adv-hACE2 transduced mice from B.1.617.2 infection at an antibody concentration of 25 â€‹mg/kg, while RD10 could protect mice from B.1.351 infection at an antibody concentration of 75 â€‹mg/kg. These results highlight the potential for future modifications of the mAbs for practical use.


Asunto(s)
Anticuerpos Monoclonales , COVID-19 , Animales , Humanos , Ratones , Hibridomas , SARS-CoV-2 , Anticuerpos Antivirales , Glicoproteína de la Espiga del Coronavirus , Anticuerpos Neutralizantes , Pruebas de Neutralización
2.
Front Immunol ; 13: 992787, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-2065520

RESUMEN

The coronavirus disease 2019 pandemic has caused more than 532 million infections and 6.3 million deaths to date. The reactive and neutralizing fully human antibodies of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are effective detection tools and therapeutic measures. During SARS-CoV-2 infection, a large number of SARS-CoV-2 reactive and neutralizing antibodies will be produced. Most SARS-CoV-2 reactive and neutralizing fully human antibodies are isolated from human and frequently encoded by convergent heavy-chain variable genes. However, SARS-CoV-2 viruses can mutate rapidly during replication and the resistant variants of neutralizing antibodies easily survive and evade the immune response, especially in the face of such focused antibody responses in humans. Therefore, additional tools are needed to develop different kinds of fully human antibodies to compensate for current deficiency. In this study, we utilized antibody humanized CAMouseHG mice to develop a rapid antibody discovery method and examine the antibody repertoire of SARS-CoV-2 RBD-reactive hybridoma cells derived from CAMouseHG mice by using high-throughput single-cell V(D)J sequencing analysis. CAMouseHG mice were immunized by 28-day rapid immunization method. After electrofusion and semi-solid medium screening on day 12 post-electrofusion, 171 hybridoma clones were generated based on the results of SARS-CoV-2 RBD binding activity assay. A rather obvious preferential usage of IGHV6-1 family was found in these hybridoma clones derived from CAMouseHG mice, which was significantly different from the antibodies found in patients with COVID-19. After further virus neutralization screening and antibody competition assays, we generated a noncompeting two-antibody cocktail, which showed a potent prophylactic protective efficacy against SARS-CoV-2 in cynomolgus macaques. These results indicate that humanized CAMouseHG mice not only provide a valuable platform to obtain fully human reactive and neutralizing antibodies but also have a different antibody repertoire from humans. Thus, humanized CAMouseHG mice can be used as a good complementary tool in discovery of fully human therapeutic and diagnostic antibodies.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Anticuerpos Monoclonales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Humanos , Hibridomas/metabolismo , Ratones , Glicoproteína de la Espiga del Coronavirus
3.
Hum Antibodies ; 30(1): 15-24, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-1699441

RESUMEN

BACKGROUND: The emergence of novel viruses poses severe challenges to global public health highlighting the crucial necessity for new antivirals. MAIN BODY: Monoclonal antibodies (mAbs) are immunoglobulins that bind to a single epitope. Mouse mAbs are generated by classic hybridoma technology and are mainly used for immunodiagnostics. For immunotherapy, it is critical to use monoclonal antibodies in their human form to minimize adverse reactions. They have been successfully used to treat numerous illnesses, accordingly, an increasing number of mAbs, with high potency against emerging viruses is the target of every biopharmaceutical company. The diagnostic and therapeutic mAbs market grows rapidly into a multi-billion-dollar business. Biopharmaceuticals are innovative resolutions which revolutionized the treatment of significant chronic diseases and malignancies. Currently, a variety of therapeutic options that include antiviral medications, monoclonal antibodies, and immunomodulatory agents are available for the management of COVID-19. SHORT CONCLUSION: The invasion of mAbs in new medical sectors will increase the market magnitude as it is expected to generate revenue of about 300 billion $ by 2025. In the current mini-review, the applications of monoclonal antibodies in immune-diagnosis and immunotherapy will be demonstrated, particularly for COVID-19 infection and will focus mainly on monoclonal antibodies in the market.


Asunto(s)
Anticuerpos Monoclonales , COVID-19 , Animales , Anticuerpos Antivirales/uso terapéutico , Epítopos , Humanos , Hibridomas , Ratones , SARS-CoV-2
4.
MAbs ; 13(1): 1978130, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1442969

RESUMEN

Recent years have seen unparalleled development of microfluidic applications for antibody discovery in both academic and pharmaceutical research. Microfluidics can support native chain-paired library generation as well as direct screening of antibody secreting cells obtained by rodent immunization or from the human peripheral blood. While broad diversities of neutralizing antibodies against infectious diseases such as HIV, Ebola, or COVID-19 have been identified from convalescent individuals, microfluidics can expedite therapeutic antibody discovery for cancer or immunological disease indications. In this study, a commercially available microfluidic device, Cyto-Mine, was used for the rapid identification of natively paired antibodies from rodents or human donors screened for specific binding to recombinant antigens, for direct screening with cells expressing the target of interest, and, to our knowledge for the first time, for direct broad functional IgG antibody screening in droplets. The process time from cell preparation to confirmed recombinant antibodies was four weeks. Application of this or similar microfluidic devices and methodologies can accelerate and enhance pharmaceutical antibody hit discovery.


Asunto(s)
Anticuerpos Neutralizantes/aislamiento & purificación , Inmunoglobulina G/aislamiento & purificación , Microfluídica/métodos , Animales , Anticuerpos Antibacterianos/inmunología , Anticuerpos Antibacterianos/aislamiento & purificación , Anticuerpos Monoclonales/aislamiento & purificación , Anticuerpos Antivirales/aislamiento & purificación , Especificidad de Anticuerpos , Antígenos/inmunología , Antígenos de Neoplasias/inmunología , Conservación de la Sangre , COVID-19/inmunología , Transferencia Resonante de Energía de Fluorescencia , Humanos , Hibridomas/inmunología , Separación Inmunomagnética , Dispositivos Laboratorio en un Chip , Ratones , Microfluídica/instrumentación , Muromonab-CD3/inmunología , Células Plasmáticas , Proteínas Recombinantes/inmunología , SARS-CoV-2/inmunología , Toxoide Tetánico/inmunología , Vacunación
5.
J Biosci Bioeng ; 131(6): 696-702, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: covidwho-1141952

RESUMEN

Monoclonal antibodies are extremely valuable functional biomaterials that are widely used not only in life science research but also in antibody drugs and test drugs. There is also a strong need to develop high-quality neutralizing antibodies as soon as possible in order to stop the rapid spread of new infectious diseases such as the SARS-CoV-2 virus. This study has developed a membrane-type immunoglobulin-directed hybridoma screening (MIHS) method for obtaining high-quality monoclonal antibodies with high efficiency and high speed. In addition to these advantages, this paper demonstrates that the MIHS method can selectively obtain monoclonal antibodies that specifically recognize the functional structure of proteins. The MIHS method is a useful technology that greatly contributes to the research community because it can be easily introduced in any laboratory that uses a flow cytometer.


Asunto(s)
Anticuerpos Monoclonales/análisis , Anticuerpos Monoclonales/inmunología , Especificidad de Anticuerpos/inmunología , Hibridomas/metabolismo , Animales , Anticuerpos Monoclonales/biosíntesis , Anticuerpos Monoclonales/aislamiento & purificación , Anticuerpos Neutralizantes/análisis , Anticuerpos Neutralizantes/biosíntesis , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/aislamiento & purificación , Línea Celular Tumoral , Ensayo de Inmunoadsorción Enzimática/métodos , Citometría de Flujo/métodos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/inmunología , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Hibridomas/citología , Isotipos de Inmunoglobulinas , Inmunoprecipitación , Ratones , Factores de Tiempo
6.
Int J Mol Sci ; 21(23)2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: covidwho-954912

RESUMEN

In 2020 the world faced the pandemic of COVID-19 severe acute respiratory syndrome caused by a new type of coronavirus named SARS-CoV-2. To stop the spread of the disease, it is crucial to create molecular tools allowing the investigation, diagnoses and treatment of COVID-19. One of such tools are monoclonal antibodies (mAbs). In this study we describe the development of hybridoma cells that can produce mouse mAbs against receptor binding domain of SARS-CoV-2 spike (S) protein. These mAbs are able to specifically detect native and denatured S proteins in all tested applications, including immunoblotting, enzyme-linked immunosorbent assay, immunofluorescence staining of cells and immunohistochemical staining of paraffin embedded patients' tissue samples. In addition, we showed that the obtained mAbs can efficiently block SARS-CoV-2 infection in in vitro experiments. Finally, we determined the amino acid sequence of light and heavy chains of the mAbs. This information will allow the use of corresponding peptides to establish genetically engineered therapeutic antibodies. To date multiple mAbs against SARS-CoV-2 proteins have been established, however, bigger sets of various antibodies will allow the detection and neutralization of SARS-CoV-2, even if the virus acquires novel mutations.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Antígenos Virales/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/inmunología , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Reacciones Antígeno-Anticuerpo , Antígenos Virales/inmunología , COVID-19/patología , COVID-19/virología , Ensayo de Inmunoadsorción Enzimática , Células HEK293 , Humanos , Hibridomas/citología , Hibridomas/metabolismo , Inmunohistoquímica , Pulmón/patología , Pulmón/virología , Ratones , Ratones Endogámicos BALB C , Dominios Proteicos/inmunología , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/aislamiento & purificación , SARS-CoV-2/inmunología , SARS-CoV-2/aislamiento & purificación , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA